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Abstract. Thesecondorder differential equationcharacterof thesolutionsof the
dynamicalequationi(JT)WL = dEL for a singularLagrangianL, as well as thecon-
ditionsfor the existenceof sucha solution,arestudied Wealso introducea couple
of mapsR(L)

5 TPL(v)(T*Q) -+ T0(TQ) andT(L)~ T~(O)(T*Q)-+ TFL(~(T*Q),
with v E TQ, which are shownto be very usefulfor establishingtheconnection
betweenthe constraintsarising in the Lagrangianand Hamiltonianformulations.

1. INTRODUCTION

The geometricapproachto different problemsin somebranchesof Theoretical
Physics,for instanceClassicalMechanicsandClassical Field Theory, seemsto be
very suitable and fruitful and it has given rise to a considerableprogressin the
understandingof someaspectsof Lagrangianand Hamiltoniansystems.In parti-

cular, the Symplectic Geometryhasbeenshownto be the appropriateframework
for the descriptionof autonomousregular mechanicalsystemsprovidinga way
for dealing on the samefooting with LagrangianandHamiltonian systems(see
e.g. [1, 2]). Thereishoweveralot of interestingphysicalsystemsthataredescribed
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by singular L.agrangiansandthe study of such systems.startedby Dirac ([3,4]),
is receiving much attention on the last years,no doubt becausethesesystems
exhibit gauge invariance, a crucial property in the modern physical theories.
From the geometricpoint of view, it is clear the necessityof a more general

framework to take accountof suchsingular systemsand the geometricapproach
developedby several authors(see e.g. [5, 10] and for a particularaccount,see
[11]) seemsto be worth a deeperanalysison somespecific pointsas the relation

betweenthe constraintfunctionsin the LagrangianandHamiltonianformulations
respectively,as well as the secondorder differentialequation(hereaftershortened
as S.O.D.E.)problem.

More accurately,in the traditional approach,whenthe Lagrangianis singular

the Euler-Lagrangeequationscannot be written in normal form becausethe
matrix of the coefficients of the accelerationsis singular and then either the
solutionsofsuchequationsare not uniquely determinedby the initial conditions,

or evenworse,thereis no solution at all for someparticularchoicesof the initial
conditions. In the geometricapproach,some of theseaspectsare clarified, but
more to thepoint is that the Euler-Lagrangeequationsdo not correspondto some

of the solutions of the dynamical equation([7, 12]). This is a very interesting
featureof the singularLagrangiansystemswhich was pointed out by Gotayand

Nesterand that unfortunatelyseemsto havebeenunnoticedfor the mostpart of
physicists. In such casesthe solution of the dynamicalequationcan only be

chosento be the restriction of a S.O.D.E.in some points of the velocity phase
spaceandthus some additional constraintsin the Lagrangianformulationarise
in this way. In other words, besidesthe constraint functions determiningthe
points where thereexist solutionsof the dynamicalequation,wich will becalled

dynamical constraints,thereare other constraintfunctions determiningthe sub-
set where a solutionrestriction of a S.O.D.E. canbe found. Theselast constraints

will be calledS.O.D.E.conditions.
On the other hand, a Hamiltonian formulation is also possible for systems

describedby singular Lagrangians,andthis was actually the form in whichDirac

introduced his theory of constraints. In this situation the image of the velocity

phasespaceTQ under the LegendretransformationFL TQ —* T*Q doesnot
coverall the phasespaceT*Q, but only a submanifoldM

1 , / :M1 —i- T*Q, called

the primary constraintsubmanifold.The pull backon M1 of the canonicalsyrn-

plectic form ~2 definedin thephasespace,assumedto be of a constantrank, gives

a presymplecticform andas theenergyE, is a FL-projectablefunction, i.e., there
exists a function II E C~(M1)such that H o FL EL, a presymplecticsystem

(M1, j’
1’f2, H) can then be defined.The generaltheoryof presymplecticsystems

([5 - 7, 13]), geometricversion of Dirac’s theory, can thereforebeappliedeither

to (TQ, WL, EL) or to (M
1, / ~ II) giving rise to constraint functions. The



GEOMETRIC STUDY OF THE CONNECTJON, ETC. 317

relation betweendynamical Lagrangianand Hamiltonian constraintfunctions is

well known [6]: essentially the dynamical Lagrangian constraintsarise as the
FL-pull-backof secondaryHamiltonianconstraints.

However,the usualstudyof Lagrangianconstraintstakesas a startingpoint the

Euler-Lagrangeequationsandsome of the constraintsso obtainedhaveno coun-
terpart in the geometricversion whenthe presymplecticsystem(TQ, WL , EL ) is
considered.Actually, the additional constraintsthat appearcorrespondto the

S.O.D.E. conditions describedin a former paragraph. Moreover, the S.O.D.E.
conditions can be shown to be non-FL-projectable[14] while the dynamical
constraints associatedwith such a system are just the projectableLagrangian

constraints.
In very recent papers ([15, 16]), the relation betweenall the constraint

functionsarisingin the Lagrangianand Hamiltonian formulationsis studied,but

their approachwas a local, coordinatedependent,one. This paperaims to com-
plete the precedingpapersby carryingout a geometricalanalysiswith no use of

coordinate expressionswhich could mask the coordinate-dependentnatureof
some local expressions.Moreover, the intrinsic characterof the expressionscan
in no way be consideredas an <<academicsubjectx,but as a step more in the
processof geometrizationof the physics;as remarkedby Lichnerowicz[17] <<if

we understandtruly classicalanalyticaldynamicswe havea chanceto understand
more easily quantum dynamics and to obtain new invariant tools>>. Actually,
the fact that the expressionsare intrinsic permits a generalizationto infinite-
dimensionalsystems.

We will show that thenon-dynamicalLagrangianconstraintsarisein a natural

way when the S.O.D.E.characterof the solutionsis takeninto account.Themost
important contribution of the paper is that in order to relate the set of the
Hamiltonian constraint functions with that of all the Lagrangianones we are

going to show that it cannot be usedtheFL-pull-backwhich only would give the

FL-projectableconstraints,but we developan alternativemethod basedon the
introduction of a map R pulling the vectorfields in M1 backto TQ and establi-
shingin this way the appropriaterelation.

The paperis organizedas follows: In Section 2 we introducethe notationand

the basicdefinitionsto beusedlaterandexhibit the S.O.D.E. problemforsingular
Lagrangians.Section3 is devotedto studythe relationsbetweenKer andits
verticalpart Ker FL *, as well as whetherthe image of Ker WL underthevertical
endomorphisniS covers KerFL~.The distinction betweendynamicalconstraints

and S.O.D.E. conditionsin the Lagrangianformulation is given in Section4. In
order to connectthis theorywith the Hamiltonianone,we introducein Section
5, in a pure geometricalway, two L-dependentmaps which allow to give a geo-

metrical senseto some of the resultsobtainedin previouspapers([15, 1 6, 18 and
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19]) using coordinate expressions.Finally the theory is get ready for explicit

calculationsand applicationsin the last Section where the resultsof the paper
are also displayedby meansof somephysicalexamples.

2. NOTATION AND BASIC DEFINITIONS

Time-independentLagrangian systems are described from the geometric
point of view usingthe geometryof the tangentbundle,TQ, of a differentiable

manifold Q, the configuration spaceof the system. We will use through this
paper the resultsof the paper by Crampin [20] concerningthe geometryof the

tangentbundle and particularly the propertiesof the fundamental(1, 1) cano-

nical tensor 5, called the vertical endomorphism,which defines the natural
almost tangent structure of TQ. Given a function L E C°~(TQ),we define an
exact two-form WL = — d(dL o S) and a functionEL = A(L) — L, calledthe

energy runction, where ~ E~(TQ)denotesthe Liouville vectorfield generating
dilations along the fibres of TQ. If WL is of a constantrank, L is called the
Lagrangefunction, and we can considerthe presymplecticsystemgiven by the
triplet (TQ, WL, d~EL) with the associatedequation

(2.1) i(F)WL _~L

whosesolutionsdeterminethe possibledynamics.

The particular caseof L beingsuchthat is of maximal rank,i.e. the bundle
map, WL : T(TQ) -÷ T*(TQ), definedby contraction, is invertible, is that of

regular Lagrangiansand the Legendretransformation[1], FL : TQ -+ T*Q, is
then a local diffeomorphism.Moreover,in this last case,it is easyto seethat the
dynamicalequation(2.1) hasonly a solution which is a secondorder differential
equation field, i.e., S(FL) = i~, and moreoverthe curvesprojection on Q of the

integral curvesof FL will satisfy the well-known Euler-Lagrangeequations.It was

remarked[7] that this fact doesnot hold for a singular Lagrangian. In fact, if L

is singular the two-form WL is not symplecticandthe dynamicalequation (2.1)
may not havesolution in somepoints and the solution is not uniquein the other
points, and on the projection on Q of the integral curvesof sucha solution,the
Euler-Lagrangeequationsdo not hold. Similarly, we can considerthe presym-
plectic systemdefinedon the image of TQ underFL, / : FL(TQ) M1 —~ T*Q,

(M1, j~2, dH), where H is the FL-projection of the energy function and &2 is
the canonicalsymplecticform on T*Q, with theassociatedequation

(2.2) i(X)/*&~= dH

Gotay et al. [5 - 7] havedevelopeda geometricalgorithmfor the determination
of a maximal submanifoldin both cases,called the final constraintsubmanifold
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C C TQ (respectivelyP C T*Q), in which thedynamicalequation(2.l)(respecti-
vely (2.2))hasa consistentsolution.

In a recentpaper [12] it was shownthat for a particulartype of Lagrangians,
calledType II Lagrangiansin [21], it is possibleto find a secondorder differential

equation whose restriction on the final constraint submanifold satisfies the
dynamical equation.The proof is purely algebraicandit doesnot assurewether
the S.O.D.E. solution is tangent to C or not. In the general casewe cannot

guaranteethe existenceof a solution restriction on C of a S.O.D.E. andthen,
some additional S.O.D.E. conditions selectingthe subset of C in which sucha

solution canbe foundmustbe considered.
The proofs of thesefacts are basedon the following propertiesconnectingS

andthepresymplecticform WL [20]:

(2.3a) i) i(S(U))WL =_i(U)WL0S, VUE%(TQ),

(2.3b) ii) i(
4)WL = dE~° S.

We will denoteKer the subbundleof T(TQ)

Ker WL = {U E T(TQ)~i(U)[~L (ir~(U))]=

but, with some abuseof notation,we also denoteKer WL the setof the smooth
sectionsof : T(TQ) -+ TQ taking valuesin the subbundleKer WL. Similarly,
we also denote c.iL the map fromer(TQ) into N (TQ) obtainedby making act

on sectionsof : T(TQ) —~ TQ. With this notation,therelation(2.3a)may
be written WL o S = — o w~,which was introducedfor regular Lagrangians
by Vershik and Faddeev[22].

The aboveproperties(2.3) can be used to provethat S(Ker ~L) C Ker “-‘L ~

n V(TQ) V(Ker wL), where V(TQ) Ker ir~ is the subbundleof vertical

vectorsin T(TQ). The set of sectionsof the subbundleV(TQ) will be denoted
~[V(rQ) and its elementsare calledvertical fields. For any vectorfield F solution
of the dynamicalequation (2.1),S(F)— L~E V(Ker WL). In particular,aspointed

before, when WL is regular ~L is a S.O.D.E..On the otherhand,we remarkthat
in the general case,anothervector field F’ will also be solution of (2.1) if and

only if the differenceF — F’ lies in Ker WL. Similarly, if F is a S.O.D.E.,F’ is
a S.O.D.E. if and only if the differenceF’ — F is a vertical field. Thus,the ideais
to start from a particular solution F of (2.1) and to modify it by adding an
elementin Ker OiL in order to obtain, if possible,a S.O.D.E. solution of (2.1)

too. It will be possible if the differenceS(F) — ~ is the image underS of an
e1en~entin Ker OiL. Then, we will study the imageof Ker WL~underS and we

will analysethe caseswhenthe mapS’ mS is ontoV(Ker OiL).
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3. PROPERTIESOFKer OiL AND KerFL~

In order that this paper be selfcontainedwe begin this section by reviewing
the well-known propertyV(Ker OiL) = Ker FL*, giving an intrinsic, coordinate-

independent,proof. Otherpropertiesrelatedto the mapS’ : Ker OiL -* V(Ker OiL)

will alsobe given.

PROPOSiTION 1. Let v be a vectorvETQ. The tangentspaceinFL(v), T~(u)(T*Q),

is a sum of the two vector subspacesV~~(T*Q)andFL*~[T~(TQ)],namely,

(3.1) T~(~)(T*Q)r=V~)(T*Q)+FL*T(TQ).

Proof We first recall that FL is a base preservingbundle map,i.e., r0FL = iT,

where T : T*Q -÷ Q and it : TQ —~ Q are the correspondingprojectionsof the
cotangentandthetangentbundlesrespectively.Therefore,for anyZ E TFL( (T*Q),
as it is a submersion,there will exist a vector Y E TV(TQ) such that r*FLOZ =

= it~ Y. It is an easy task to check that Z — FL Y = W is a vertical vector
W E V~(u)(T*Q), so that any Z E T~(v)(T*Q) can be decomposedas a sum
Z = FL Y + W and thestatementof thepropositionfollows.

PROPOSITION2. Givenany U E TQ, the subspacesVFL(U)(T Q) and [FL *,, T~(TQ)]’

are disjoint,

(3.2) VFL(U)(TQ) fl [FL*~T~(TQ)]’ = 0.

Proof. It is just a consequenceof Proposition 1, whentaking into accountthat

= VFL(u)(T*Q), where the symbol I makes referenceto the
orthogonal with respectto the canonicalsymplectic structure&2 in T*Q, i.e.,
for every subbundleH of T(T*Q), H’ will denoteH’ ={Z E T(T*Q)i f?~(Z,X) =

=OforeveryXEH).

The symbol I will be used either with respectto the symplecticstructurec�
in T*Q or with respectto the presymplecticstructureOiL in TQ.

PROPOSITION3. The verticalpart of Ker OiL coincideswith Ker FL*

(3.3) V(KerwL)= KerFL*

Proof First of all, since OiL coincideswith the pull-backof ~2underFL, we see
that Ker FL~C Ker OiL and FL*(Ker oiL) C [FL~(TTQ)]’. Moreover,as FL is
fibre-preserving,FL*(V(TQ)) C V(T*Q). Then,
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FL*(V(Ker OiL)) = FL~(V(TQ)fl KerOiL) C [FL~(TTQflL fl V(T”Q) = 0,

so that the relation V(Ker oiL ) C Ker FL* follows.
Conversely, from r° FL = it we can seethat Ker FL~is madeup by vertical

vectors,so that Ker FL* C Ker oiL ñ V(TQ) = V(Ker oiL) and Proposition~
is proved.

DEFINITION 1. Let M be the subset of T(TQ) determinedby the inverseimage

of V(Ker oiL ) under~,

(3.4) M={UET(TQ)IS(U)EV(KerwL)}.

It is now an easytask to checkthat M = [V(TQ)]~- becauseof relation(2.3a).

Moreover,M is coisotropic,i.e., M’ C M, andevery one form imageof a vertical
vector field underc3L vanisheson M.

PROPOSITION 4. For every X in M’ there exists a vertical vector V such that

X — V E Ker OiL. Such vector V is only definedup to an elementof V(Ker oiL).

Proof. Given an arbitrary vector X, the equationEVWL = IXWL canbe solved

for V vertical if andonly if VU E [V(TQ)]’, oiL (X, U) = 0. In particular,this is

true if X liesin M’ because[V(TQ)]’ M. Forany couple V
1, V2 of suchvertical

fields the differenceis verticalandlies in Ker oiL~

This gives an identification of M’ with Ker oiL up to elementsof V(Ker oiL)

and an immediate consequenceof Proposition 4 is that if M’/S is the factor
bundle definedby the equivalencerelation associatedto SIM~,M’/S Ker oiL /5,

andnext commutativediagramfollows:

M’/SraKer oiL/S S(Ker OiL)

(3.5) MIS ~ V(Ker oiL)

.1.
TTQ/S V(TQ)

the vertical arrows meaningthe naturalinjectionsandthe horizontal identifica-
tions beinggiven by S.

COROLLARY 1. A vertical vector X is in S(Ker oiL) if and only if for every Z
suchthatS(Z) X andevery U inM, OiL (Z, U) = 0.

It is worth recalling that it has recently beeenshown [12] that the mapS’

— S Kerw , 5’ : Ker OiL -+ V(Ker OiL) is ontoif andonly if



322 JOSE F. CARINENA, CARLOS LOPEZ, NARCJSO ROMAN-ROY

(3.6) dim Ker = 2 dim V(Ker oiL),

and consequently,for such Lagrangians,if X is a solution of (2.1) on the final

constraint submanifold C, since S(F) — L~E V(Ker OiL), there will exist U C

C Ker suchthatS(X) — = 5(U). Then, F = X — U isaS. O.D.E.satisfyingthe
dynamical equationon C. However we are not able to guaranteethat F can be
chosenas beingtangentto the final constraintsubmanifoldC unlessthe dynamics

is global (all the constraintsare trivial andC = TQ). Anothercharacterizationof
such Lagrangians,called type II Lagrangians,is given by next Corollary wicli also
follows from theformerdiagram.

COROLLARY 2. S(Ker oiL ) = V(Ker oiL ) if and only ifM M’.

4. THE PRIMARY LAGRANGIAN CONSTRAINTS AND THE EQUATIONS
OF MOTION

As indicatedabove, if the LagrangianL is singular the two-form oiL is pre-

symplectic and as a first step we have to determinethe pointsof TQ in which

the dynamicalequationhas a solution. It is well known that the compatibility
conditionis [7]

(4.1) i(Z)dEL=O, VZEKerWL.

We remark that for any S.O.D.E.,F0, the one-formi(F0 )OiL — is horizon-
tal, i.e. semibasic[20]. In fact, this propertyis equivalentto

(4.2) (i(Fo)oiL — dEL) ° S = 0,

and this follows from (2.3) after a little of algebra.The converseproperty is
only true for regular Lagrangiansbut not for a singular one. Property(4.2) can

be used to show that condition (4.1) is automatically satisfied for any
Z E V(Ker oiL) as indicatedby Cantrijn [23], just consideringanarbitraryX EM

suchthatS(X) = Z C V(Ker OiL ), and contractingit with (4.2).

THEOREM 1. Givena Lagrangian function L C C~(TQ), the threenextassertions
are equivalent:

i) Thedynamicalequation (2.1)admitsa globalS.O.D.E.solution.
ii) There exists a global solution of (2.1) andfor everysuch solution X and

c~achS.O.D.E. F0, the differenceX — F0 issuch that its imageunder ~L vanishes

on the elementsofM.
iii) For every S.O.D.E. F0, the horizontal one-form i(FQ)OiL — (‘EL is in the

imageunderc~Lof the vertical vectors, or in an equivalentformulation, the one-
form vanisheson the vectorsmM.
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Proof Let F0 denote an arbitrary S.O.D.E. and let us supposethat i) is true, i.e.
thereexists a global S.O.D.E. solution F. Then for every global solution X and

every S.O.D.E.F0

wLl~’O)-..cI.EL wL~O)~L~’Fo)

andF — F0 beingvertical,propertyii) follows.
Beginning with propertyii) as an hypothesisand consideringa global solution

X of (2.1), the expression~L(X— F0) = dEL — WL(Fo)showsthat i(Fo)oiL —

— dEL is in the imageof the vertical vectorfields under
Finally, if i(F~)oiL — dEL vanisheswhen applied to M, it meansthat the

equationi(F0 )OiL — dEL = i(V)oiL canbesolved for V verticalandthen F0 — V

is a global S.O.D.E.solution.

Using a proceduresimilar to the one usedin the derivation of the TheoremI,

we can concludethat the set of points of TQ in which a solution of (2.1) that is
the restriction of a S.O.D.E. exists,is madeup by the points in which the one-
form i(FO)oiL — dEL takes values in c2i~(V(TQ)) for one S.O.D.E. F0 (and

thereforefor any S.O.D.E.too),or in an equivalentformulation,it vanishesonthe
vectorsin M. Alternatively, it can also be defined as the set of points of the
primary dynamicalLagrangianconstraintsubmanifoldin which the image under

~‘-
1L of the difference X — F

0 vanisheson the correspondingelementsof M, X
and F0 being an arbitrarysolution of (2.1) in that pointsanda S.O.D.E.,respec-

tively. In order to find a method for obtainingthe subsetin which a solution of
the dynamicsrestrictionof a S.O.D.E. exists, we remarkthat if U lies in M, the
condition obtained for U is the sameas for U + 5(Y), so that we mustchoose

just one elementinevery fibre of M —*M/S andthe correspondingconditionreads

(4.3) (~L(Fo)dEL)(U)= 0,

for an arbitraryS.O.D.E.. This condition is no matterof thechoiceof F0 andin
the particular casein which U canbe chosenin Ker oiL this is not an additional

condition, but it reducesto a condition for the existenceof a solution of (2.1).
If the map 5’ = S is onto, we can also seethat the S.O.D.E. conditionis
automaticallysatisfied.in fact, if X and F~are as in the former paragraph,then
thevaluesof the differenceX — F0 have to lie in M because

i(S(X — Fo))oiL = i(S(X))oiL — i(i~)oiL = i(X)oiL ° ~— i(i~)oiL = 0,

the last relation coming from (2.3b) andso ifS’ is onto, theresult of the Corol-

lary 2 showsthat c
3L (X — F

0) vanisheson M.
In summary, the constraint functions defining the subsetcrf TQ where the

equation(2.1) has a solution that is a restrictionof a S.O.D.E.arein a one-to-one
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correspondencewith the sectionsof V(Ker OiL) = MIS, by meansof (4.3), the

dynamical constraint functions being associatedwith sectionsof S(Ker OiL)

while the additional S.O.D.E. conditions are associatedwith the other ones.

5. THE CORRESPONDENCEWITH THE HAMILTONIAN FORMULATION

DEFINITION 2. Let i~ : E -+ Q be a vector bundle on Q andF: TQ -+E a bundle

map preservingthe base Q. We will denoteR(F) the map R(F) :.~1(E)-~‘,~‘(TQ),

givenby

(5.1) [R(F)X]~ =~U[~qX1 VXE~(E)

where ~‘ : T~,(U)Q—~ TU(TQ) is the vertical lift

(5.2) ~
t’(w)f= d(f(u + tw))/dtj~_

0, VfCC~(TQ). .

This vectorfield is differentiable. In fact, its nonvanishingcomponentsare the
pull-backby F of the first componentsof X.

A particularcaseof such definition is whenE TQ andFis the identity map

in which R(idTQ) reducesto the well-known vertical endomorphismS. We will
dealwith the caseE = T*Q andF the LegendretransformationFL : TQ -~ T*Q

associatedto a given Lagrangian function L. The notation R(L) will be used
insteadof R(FL). We also remarkthat a mapR(L)of T(T*Q)in T(TQ) inducing
the correspondingmap.~(T*Q)—~J(TQ)doesnotexist. However,for any v C TQ

we candefinea map

R(L)~: T~(U)(T*Q)-÷

given by

(5.3) R(L)~(U)= ~
t~[T*~(v)U], VUC

We next list a set of interestingpropertiesof R(L).

PROPOSITION5. i) The image underR(L)~is in the subspaceof vertical vectors

V~(TQ)and correspondingly the vector fields R(L)X are vertical for any
X E~1T*Q).

ii) Thefollowingrelation holds:R(L)
0 FL*~=S~.

Proof i) is a consequenceof thedefinition (5.3) and ii) follows from therelation
T FL 7TQ~which impliesT*FL(v) C FL*~= ITQ* ~.

A new map T(L)~ : TFL(u)(T*Q) -÷ T~(v)(T*Q) is also going to play an
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importantrole in the descriptionof therelation betweentheLagrangianand the
Hamilotnianformulations.

DEFINITION 3. Let T(L)~be themap T(L)~: ~

(5.4) T(L)X = FL*~R(L)~(X), VX E T~(V)(T*Q).

It is obvious that the image of T(L)~is in VFL(V)(T Q). On the otherhand,

thereis an interestingrelation betweenT(L)~and the vertical endomorphism:
FL~~intertwinesT(L)~andS~.

PROPOSITION6. T(L)~and S~,are connectedby thefollowing relation:

(5.5) T(L) cFL* _FL*~ 0S,,.

Proof Both sidesof the relationcoincide as a consequenceof ii) in Proposition5:

~ .

In the particular case of a hyper-regularLagrangianin which FL would be a
global diffeomorphism, this shows that T(L) is the (1.1) tensor field in T*Q
correspondingto the verticalendomorphismS in TQ. Thereis a relationplaying

a rolesimilar to (2.3a)which will be given in the following proposition:

PROPOSITION 7. If fZ denotes the canonical syrnplecticform in T*Q, then

(5.6) [i(T(L)~X)f2](FL(v)) =— [i(X)&lj o T(L)~, VX ~ TFL(u)(T*Q)

Proof It is basedon the relation (3.1) accordingto which TI~(U)[T*QI can be
written as a sum

TFL(U)[T*Q] = VFL(U)(T .Q) + FL*[T~(TQ)]

and that the restriction of &2 on the subbundleof verticalvectorsvanishes.It is
enoughto prove (5.6) whenappliedto a vectoreitherin VFL(v)(T*Q) or elsein
FL*~T(TQ),becauseof the linearity of theexpression(5.6)

i) If Y C VFL(V)(T Q), then f2(T(L)~X,Y) = 0 becausebothTL,,(X) and Y

are vertical. On the otherside,R(L)~(Y)=0 andsoT(L)~Y=0, too. Therelation
(5.6) is thentrue, in this case.

ii) Let now assumethat Y E FL*~T(TQ).Thereis a decompositionof X as a
sum X = X1 + X2 with X1 C FL*~T(TQ),X2 E VFL(p)(T*Q). Let Y’ E TV(TQ)
be such that FL*~Y’ = Y and similarly a C T~,(TQ)is chosensuch that

FL*X~ = X1. Then fMT(L)~X1,F) canbe rewritten
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�2(T(L)X1, Y) = ~Z(T(L) FL*~X~,FL*~Y’),

andtakinginto account(5.4) we will obtain

~7(T(L)X1, Y) = Fl(FL* oS~X,FL*~Y’)= OiL(S~,X~,Y’).

andwhenusing(2.3a)it becomes

f~(T(L)~X1,Y) wL(S~,Y’, X’~) ~Z(FL*~S~Y’, X1).

Finally, the intertwiningrelation(5.5)leadsto

&1(T(L)X1, Y) = ~(T(L)~Y, X1).

As far as the othercomponentX2 is concerned,f2(T(L)~X2,Y) = 0, because

R(L)VX2 = 0, and~(~2’ T(L) Y)vanishestoo,becauseboth fields arevertical. .

We will now be interestedin the relationsbetweenthe constraintfunctionsin

the Lagrangianformulation andthoseof the Hamiltonian one.This relationsare
going to be studiedby meansof the map R(L) introducedin the beginningof

this Section.Following the notation of [6], the primary constraintsubmanifold

in the Hamiltonian formulation will be denotedM1 = FL(TQ) and we will
hereafterassumethat the Lagrangiansystemis almost regular, i.e. FL is a sub-

mersiononto its image and for every v C TQ the fibresFL
1 ~FL(v)} are assumed

to be connectedsubmanifoldsof TQ. We alsorecall [8, 9, 24] that the constraint
functions 4 defining M

1 are those with associatedvector fields taking their
values in TM1L, while first class(at theM1 level) constraintfunctionscorrespond

to vectorfields with values in TM1 fl (TM1)~-.Hence,we will next startwith the
studyof the imageof [FL*)T(TQ)1

1 underR(L)~.

THEOREM 2. TheimageunderR (L ~ of[FL *~ T(TQ)]1 coincideswith V~(Ker oiL).

Proof. LetX bean elementof [FL~~T(TQ)]’-. Then,‘~JYC T~(TQ),

WL(R(L)VX, Y)=.~2(FL*~~ R(L)X, FL~Y)= ~2(T(L)X, FL~Y),

andwe canmakeuseof theformer propositionfor obtaining that

WL(R(L)X, Y) — &7(X, T(L)~oFL~Y) — fl(X, FL*~oS Y)rr 0,

where we have also taken into accountthe intertwining property (5.5) between

T(L)~andS~.Thus,R(L)~[FL*~,T(TQ)]’is containedin V(Ker OiL).

Furthermorethe restriction of R(L)~to [FL~T(TQ)].L is injective because
of (3.2). ThenR(L) [FL*~T(TQ)]’ = V~(KerOiL).

As regardsthe theoryof constraintfunctions, this theoremsays that if 0 is a



GEOMETRIC STUDY OF ThE CONNECTION, ETC. 327

constraintfunction for the M1 submanifold,thenR(L)XØ is in V(Ker oiL) and
that this last set is generatedin this way. In particular,if we recall (3.3), that
means that the vector fields R(L)X~annihilate the FL-projectable functions
[18].

PROPOSITION8. The map T(L~ has thefollowingproperties
i) X C Ker T(L)~if and only if R(L)~XE V(Ker oiL).

ii) The kernelofT(L ~ coincideswith [ImT(L~
iii) For every v C T(TQ), the vectorsubspaceImT(L)~is isotropic.

Proof i) Let ussuposethat XE Ker T(L)~.Then,R(L)UX is verticaland further-

more,for any V C T0(TQ),

OiL(R(L)X, Y)= f~(FL*~oR(L)~X,FL*~Y)=~(T(L)~X,FL*fl=0

Conversely, let X be such that R(L)UX E V(Ker oiL). Then, for an arbitrary
Y C T(TQ), we have oiL (R(L)~X,Y) = 0 and thereforeS.2(FL*~ R(L)~JX,
FL*~Y) = 0. From this relation we see that T(L)VX E [FL* T(TQ)]’ and as
T(L)VX is vertical,the relation (3.2) showsthatXE Ker T(L)~.

ii) It is a consequenceof (5.6)
iii) Wefirst remark that [T(L)~]

2 = 0 because

[T(L)]2 = FL~ o R(L) oFL* o R(L)~= FL*~ S ° R(L)~= 0.

HenceImT(L) is containedin Ker T(L)~.Now, ii) implies that ImT(L)~is an

isotropicsubspaceof TFL(U)(T*Q).

PROPOSITION9. ThesubspaceKerT(L)~is a direct sum

Ker T(L)~= VFLO(T Q) n [FL*
0T(TQ)]’

Proof It is basedon the precedingProposition,becauseR(L)v~V~(v)(T*Q)}=0
andit has beenshown in Theorem2 that R(L) {[FL*1,T(TQ)]’} = V~(KeroiL).

Hence,it follows therelation V~(v)(T*Q)~ [FL*~T(TQ)]’ C Ker T(L)~.
Furthermore, if X is an elementof Ker T(L)~,let Y be the elementof

V~(Ker oiL) defined by R(L )~X= Y. Then, Theorem4 showsthe existenceof
an elementX2 C [FL*~T(TQ)J’ such that Y = R(L)UX2. The differenceX1=
= X — X2 is verticalandthenXE VJ~(V)(TQ) e [FL~T(TQ)J’.

An importantpropertyof the first class (at the M1 -level) constraintfunctions
is given in the followingtheorem:
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ThEOREM 3. Let 0 be a constraintfunctionfor M1 and X~denote the cor-
respondingvectorfield X~= f2~’ (dØ). Then, 0 is first class (at the M1 level)

if andonly if thereexistsa Z0 E Ker OiL suchthatS(Z~)= R(L)X~.

Proof If 0 is first class,there will be a FL-projectablevectorfield Z,1~C~(TQ)
suchthatFL~Z0= X~(seee.g. [6]). Then,

R(L)XG =R(L)FL~Z0=S(Z~).

The vector field Z,~built in this way lies iii Ker OiL because,in a pointwise

sense

OiL(Z~,~

the last identity being a consequenceof X0 being a vectorfield with valuesin
[FL*T(TQ)]~-.

Conversely, if we assumethe existenceof a vector field Z0 C Ker oiL such

that S(Z~,)= R(L)X~.The differenceFL* Z~(v)— X~(FL(u))is vertical and
lies in [FLT(TQ)IL becausefor U = FL*~W,in a pointwisesense,we canwrite

~2(FL*Z,~—X~,U) = WL(ZØ, W)— F~(X~,U)

and the first term on the right hand side vanishesbecauseZ~C Ker OiL while

the secondvanishestoo because0 is a constraint function. Finally, from (3.2)
we seethatX,~= FL*Z~and then takesits valuesin TM1 fl (TM1)L so that

o is first class.

As a corollary of this theoremwe can obtain in a different way a result given

in [21]:

COROLLARY 3. The primary constraint submanifoldM1 is coisotropic if and

only if L is a typeII Lagrangian.

Proof If M1 is coisotropic all the constraintfunctions for M1 are first class.
But the vector fields R(L)X~generateV(Ker oiL) and for such vector fields we

can chooseZ C Ker oiL suchthat S(Z)= ~ ThatmeansthatS’ S IKer~L
onto V(Ker oiL). Conversely,if L is of type II, the map 5’ is ontoand the pre-
cedingtheoremshowsthatevery constraintfunction will be a first classconstraint

function. .

All theselast propertiescan also be seen as a consequenceof the following
property:
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PROPOSiTION 10. Let 4 and ~ be two constraint functionsfor M1 and
V1, Ex(TQ)suchthatS(Y0)=R(L)X~andS(Y~1)=R(L)X~.Then,

(5.7)

where { 4), 1i } is thePoissonbracketof the constraintfunctions.

Proof The differencesFL*Yçj, — X0 and FL*Y~ — X~(in a pointwisesense)

are verticalandtherefore

~ —X~)=0

Consequently,if we recall that X~and X~ take valuesin TM1’ we obtain

the relation(5.7).

The results of this sectionallow to establisha correspondencebetweenprimary
Hamiltonian and Lagrangianconstraints,different from the usualFL-pull-back,

usingthemapRL as follows:
i) Given a primary Hamiltonian constraint 4), and the related vector field

X~= I2~
1(d4)), we associateto 4) the primary Lagrangianconstraintfunction

(5.8) x~=(C~~L(Fo)—dEL)(Y~),

where Y~,is any vectorfield in TQ such that 5(Y
0) = RL (X,~,)C V(Ker oiL) and

F0 is any S.O.D.E..
ii) First classprimary Hamiltonian constraintare associatedin that way with

primary dynamical Lagrangianconstraints,while 2~classprimary Hamiltonian

constraintsare associatedwith primary S.O.D.E. conditions. In fact, the results
of Theorem5 say that if 4) is a first classfunction, the ).‘~ in (5.8) canbe chosen
in Ker oiL and then such a constraintis a dynamicalconstraintin TQ. On the
contrary,if 4) is of the secondclass,therewill exist a primary constraint~1isuch

that {~i, Ø} ° FL * 0, andconsequently(5.7) shows that thereis no vectorfield

Y,~C Ker oi, such that S(Yth) = X~andthe correspondingconstraint(5.8) will
be not a dynamicalconstraintbut a S.O.D.E. condition.

We canalsoask whethertheLagrangianconstraintssoobtainedareFL-projecta-
ble. Actually, if 4) is a first classprimaryfunction, then (5.8) reducesto dEL (Y0).

But we recall that H C FL = EL, and we can thereforerewrite the expression
(5.8) as

; =dHOFL*(Y0)o FL=FL*(X0(Jf)),

which showsthat the constraintx0 given by (5.8) is projectable;moreover,it is
the pull-backof the correspondingsecondaryHamiltonian constraint.

iii) In somecasesthe functionsx0 may becomeidentities,for instance,when
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thereare no secondaryHamiltonian constraintsthe dynamicalLagrangiancons-
traints reduceto identities,but S.O.D.E.conditionsmaystill remain.

6. APPLICATIONS

In order to make the theory ready for explicit calculationswe give the coor-
dinateexpressionsfor the different resultsof thepaper.

Take coordinatesq on the configurationspaceQ and correspondinglyq’,
on TQ (with range and sum conventionsin force). The map c~Lwhenreferredto

the correspondinglocal basisofe((TQ) and A1 (TQ) is

IA —woi=ILw o

where WandA are,respectively,

(6.1) A~
1= 8

2L/aq’av’—o2L/av~q’and =

The elementsX = ~‘~/av’ of V(Ker oiL) are determinedby the condition

(6.2) = 0,

and consequentlythe vector fields in TQ with values in M will be of the form
~‘a/aq’ + 7?’a/avt with ~satisfying(6.2)and~ibeingarbitrary.

We recall that the set of points of TQ in which thereexistsa solution of the
dynamical equation (2.1) that is the restriction of a S.O.D.E. was determined
by the conditions (4.3). The one-form i(Fo)WL — l~ELbeinga semibasicform,
theseconditionsmayalso be rewritten

(6.3) <~,~>=0 V~suchthatW~=0,

where

(6.4) c~,= aL/aq’— (a2L/au1aq’)t/,

no matterof the choicefor the S.O.D.E. F
0.

As remarkedbefore, the casein which the vector field X in (4.3) can be chosen

in Ker oiL is that of <<dynamical constraints>>while the remainingequationswill

be S.O.D.E. conditions. The difference betweenboth casesis also clear in coor-
dinates.Given a vector field X = ~3/~q

1 + nzö/avl such that S(X) C M (i.e.
suchthat W~= 0), therewill exista vectorfield V = ~~/aq1 + ~T’a/av’ in Ker oiL

if and only if

(6.5) <~‘,A~>=r 0 V~’suchthatW~’=0,

as a direct consequenceof the Theorem 1, so that the set of the dynamical
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constraintfunctions>> is the subset of (6.3) correspondingto those ~ suchthat
condition (6.5) holds, the remaining constraint functions being S.O.D.E.

conditions.
As far as the connection betweenthe constraint functions arising in both

formulations is concernedwe want to point out that if 4) is a function in T*Q
andfis a function in TQ, the coordinateexpressionfor R(L)X0(f)is

(6.6) R(L)X0(f)(v) = (aØ/ap1)~(V)(af/av’) L•
Next some simple exampleswhich display the different aspectsof the theory

are analysed.As a first examplewe will study the one proposedby Christ and
Lee [25],in its reducedform:

(6.7) L = 1/2 (,2 + r2(Ô — z)
2J— V(r) (r * 0),

which hasalso beenstudiedby Costaand Girotti [26]. In this casethe Legendre
transformationis given by

(6.8) p, p~=r2(O—z) and p~=0

and thereforethereis one primary constraintfunction = p~(obviously first
class). Then, the correspondingconstraintfunction in the Lagrangianformalism

iS Cl3 = 0, namely,x = r2(~— z). This constraintis dynamical:in fact,Ker Wis
one-dimensionaland no S.O.D.E.conditionswill arise.Furthermore,the function

x is FL-projectablewith x = FL*(4)
2) with = p5. Thus, both and ~2 are

relatedwith x, 4)~by the procedureproposedin this paperwhile ~2 ~ FL-pull-
back. It is notweworthythat is the secondaryconstraintobtainedby imposing

the stability of the constraint undertime evolution.
Anotherexample,proposedby NesterenkoandChervyakov[19] is

(6.9) L = 1/2 (v1
2)—v

2x3.

In this exampleKer W is two-dimensionaland the inner product< ~‘, A~>

is different from zero for any two linearly independentvectorsof Ker W. There-
fore, there will be no dynamicalconstraintsin the Lagrangianformulation but

just the S.O.D.E.conditions

(6.10) Cl2 =v3 =0 and (13 =—V2 =0

In the Hamiltonian formulation there are two primary constraint functions
which are of the second class. The correspondingLagrangian constraints are
those given by (6.10) and they are not projectable.There are no secondary
constraintsin the Hamiltonianformulation.

As a final examplewe will studya Poincaré-likemodelin which a new variable

is added. The configuration space is the open manifold obtained from
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JR5 = {~x1,x2, x3, x0, A)} by removingthe hyperplaneA = 0. The Lagrangianis

assumedto be the following singularone

(6.11) L=i/2~{vo~7A+m2A}

it is easyto check that Ker W is one-dimensionaland Ker oiL is generatedby
aiav and ~/~A + (vu/A) a/aUg, with V denotingthe velocity of the coordinate
A. In this casethereis no S.O.D.E. condition (note that it satisfiestheextremal

condition for dimensionsof Ker oiL and V(Ker oiL)) becauseKer W being one-
dimensional the condition (6.5) always holds. The only primary constraint in
this Lagrangianformulation will be (15 = 0, namely,

x=~L/aA =—{u~v~/A2}+m2.

Thegeneralsolutionfor the dynamicalequation(2.1)is

IT = v~/3qM+ X{~/~A+ (vs/A) a/av~}

which explicitly shows that therewill exist no S.O.D.E. condition: it is always

possibleto chooseX equalto V.
The Legendretransformationis definedby

p~=v~/A, 11=0

where [I is the momentum conjugateto A. Here there is only the primary

constraint = H. Furthermore, there will be a secondaryconstraint ~2

= — m2), obtainedeither by a geometricalprocedurefollowing the

Gotayalgorithm or usingthe classicalDirac theory. The point we want to stress
hereis that bothconstraintfunctionsare of the first classand “R(L)Ø

1 = x1 =

which is the Lagrangianconstraintwe found directly in the Lagrangianformula-
tion. Moreover, the constraintx~is FL-projectable,with x1 being x1 = FL*02,
as expectedaccordingto the generaltheory, because is the only secondary

constraint.

CONCLUSIONS

The introductionof a new operatorR(L) :
2[(T*Q) -±~T(TQ)is used to find a

relation betweenthe Hamiltonian constraintsand all the Lagrangianones,at the
first level of the constrainalgorithm. It is shown why the former theorydeveloped
by Gotay and Nester [5] can not deal with the S.O.D.E. conditions (non FL-

projectable constraints). The parallelism betweenfirst class Hamiltonian cons-

traints with dynamical Lagrangianones and secondclassHamiltonian constraints

with S.O.D.E. conditions is studied with the new optics. However, the theory

here developed is not complete, and the study at higher levelsof the constraint
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algorithm makesnecessarythe introduction of a new operator,the K operator
[27]. Using both operators,K and R(L), the main results of the papercan be
generalizedto all the levels of the constraintalgorithm.
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